考慮以下一種變換,把任何非質數拆成它的一對對的整數因子,再把它們相加,如果結果不是質數就再續,以15為例
5=3*5 -->
3+5=8-->
8=2*4 -->
2+4=6 -->
6=2*3-->
2+3=5(質數)
尤拉---冰漓數學猜想是,5和7會是最常出現的結果,足證出生數為5的冰漓和出生數為7的尤拉是天生一對!
Consider this operation I call it EO transformation:
15=3*5 -->
3+5=8-->
8=2*4 -->
2+4=6 -->
6=2*3-->
2+3=5(which is a prime)
My postulate is that, for any non-prime number, 5 and 7 would be the most frequently appeared result.
Could any Mathematician please prove or disprove this assertion?
love愛情冰漓數學Mathematicsoneirocriticism尤拉euler數學猜想postulateprimeMathematical transformation數學變換Euler-oneirocriticism transformationprime number質數